Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317970

RESUMO

While the rapid advancement of immunotherapies has revolutionized cancer treatment, only a small fraction of patients derive clinical benefit. Eradication of large, established tumors appears to depend on engaging and activating both innate and adaptive immune system components to mount a rigorous and comprehensive immune response. Identifying such agents is a high unmet medical need, because they are sparse in the therapeutic landscape of cancer treatment. Here, we report that IL-36 cytokine can engage both innate and adaptive immunity to remodel an immune-suppressive tumor microenvironment (TME) and mediate potent antitumor immune responses via signaling in host hematopoietic cells. Mechanistically, IL-36 signaling modulates neutrophils in a cell-intrinsic manner to greatly enhance not only their ability to directly kill tumor cells but also promote T and NK cell responses. Thus, while poor prognostic outcomes are typically associated with neutrophil enrichment in the TME, our results highlight the pleiotropic effects of IL-36 and its therapeutic potential to modify tumor-infiltrating neutrophils into potent effector cells and engage both the innate and adaptive immune system to achieve durable antitumor responses in solid tumors.


Assuntos
Imunidade Adaptativa , Neutrófilos , Humanos , Citocinas , Terapia de Imunossupressão , Imunoterapia
2.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37058141

RESUMO

Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.


Assuntos
Infecções por HIV , Vacinas , Humanos , Apresentação de Antígeno , Cromatografia Líquida , Espectrometria de Massas em Tandem , Epitopos de Linfócito T , Antígenos Virais
3.
Cell Immunol ; 357: 104210, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32987276

RESUMO

While memory T-cells represent a hallmark of adaptive immunity, little is known about the genetic mechanisms regulating the longevity of memory CD4 T cells. Here, we studied the dynamics of gene expression in antigen specific CD4 T cells during infection, memory differentiation, and long-term survival up to nearly a year in mice. We observed that differentiation into long lived memory cells is associated with increased expression of genes inhibiting cell proliferation and apoptosis as well as genes promoting DNA repair response, lipid metabolism, and insulin resistance. We identified several transmembrane proteins in long-lived murine memory CD4 T cells, which co-localized exclusively within the responding antigen-specific memory CD4 T cells in human. The unique gene signatures of long-lived memory CD4 T cells, along with the new markers that we have defined, will enable a deeper understanding of memory CD4 T cell biology and allow for designing novel vaccines and therapeutics.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Memória Imunológica/imunologia , Adulto , Envelhecimento/genética , Animais , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular/imunologia , Proliferação de Células/genética , Citocinas/metabolismo , Humanos , Memória Imunológica/genética , Interferon gama/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
4.
Cell ; 181(2): 442-459.e29, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302573

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for defining cellular diversity in tumors, but its application toward dissecting mechanisms underlying immune-modulating therapies is scarce. We performed scRNA-seq analyses on immune and stromal populations from colorectal cancer patients, identifying specific macrophage and conventional dendritic cell (cDC) subsets as key mediators of cellular cross-talk in the tumor microenvironment. Defining comparable myeloid populations in mouse tumors enabled characterization of their response to myeloid-targeted immunotherapy. Treatment with anti-CSF1R preferentially depleted macrophages with an inflammatory signature but spared macrophage populations that in mouse and human expresses pro-angiogenic/tumorigenic genes. Treatment with a CD40 agonist antibody preferentially activated a cDC population and increased Bhlhe40+ Th1-like cells and CD8+ memory T cells. Our comprehensive analysis of key myeloid subsets in human and mouse identifies critical cellular interactions regulating tumor immunity and defines mechanisms underlying myeloid-targeted immunotherapies currently undergoing clinical testing.


Assuntos
Neoplasias do Colo/patologia , Células Mieloides/metabolismo , Análise de Célula Única/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases/genética , Linfócitos T CD8-Positivos/imunologia , China , Neoplasias do Colo/terapia , Neoplasias Colorretais/patologia , Células Dendríticas/imunologia , Feminino , Humanos , Imunoterapia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência de RNA/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
Methods Mol Biol ; 1988: 343-355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147951

RESUMO

HLA-DM is now known to have a major contribution to the selection of immunodominant epitopes. A better understanding of the mechanisms controlling epitope selection can be achieved by examination of the biophysical behavior of MHC class II molecules upon binding of antigenic peptides and of the effect of DM on the interactions. Using purified soluble molecules, in this chapter we describe several in vitro methods for measuring peptide binding to HLA-DR molecules and the effects of HLA-DM on this interaction. A simple qualitative method, Gentle SDS-PAGE Assay assesses the ability of peptides to form tight complexes with MHC class II molecules. Measuring binding kinetics is among the most informative approaches to understanding molecular mechanisms, and here we describe two different methods for measuring binding kinetics of peptide-MHC complexes. In one method, rates of association and dissociation of fluorescently labeled peptides to soluble MHC class II molecules can be determined using G50 spin columns to separate unbound peptides from those in complex with MHC molecules. In another method, association and dissociation of unlabeled peptides and MHC class II molecules can be determined in real time using BIAcore Surface Plasmon Resonance (SPR). We also describe an intrinsic tryptophan fluorescence assay for studying transient interactions of DM and MHC class II molecules.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Biologia Molecular/métodos , Peptídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , Fluorescência , Antígenos HLA-DR/metabolismo , Humanos , Cinética , Ligação Proteica , Ressonância de Plasmônio de Superfície , Triptofano/metabolismo
7.
J Immunol ; 203(4): 1076-1087, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31253728

RESUMO

Elicitation of tumor cell killing by CD8+ T cells is an effective therapeutic approach for cancer. In addition to using immune checkpoint blockade to reinvigorate existing but unresponsive tumor-specific T cells, alternative therapeutic approaches have been developed, including stimulation of polyclonal T cell cytolytic activity against tumors using bispecific T cell engager (BiTE) molecules that simultaneously engage the TCR complex and a tumor-associated Ag. BiTE molecules are efficacious against hematologic tumors and are currently being explored as an immunotherapy for solid tumors. To understand mechanisms regulating BiTE molecule--mediated CD8+ T cell activity against solid tumors, we sought to define human CD8+ T cell populations that efficiently respond to BiTE molecule stimulation and identify factors regulating their cytolytic activity. We find that human CD45RA+CCR7- CD8+ T cells are highly responsive to BiTE molecule stimulation, are enriched in genes associated with cytolytic effector function, and express multiple unique inhibitory receptors, including leukocyte Ig-like receptor B1 (LILRB1). LILRB1 and programmed cell death protein 1 (PD1) were found to be expressed by distinct CD8+ T cell populations, suggesting different roles in regulating the antitumor response. Engaging LILRB1 with its ligand HLA-G on tumor cells significantly inhibited BiTE molecule-induced CD8+ T cell activation. Blockades of LILRB1 and PD1 induced greater CD8+ T cell activation than either treatment alone. Together, our data suggest that LILRB1 functions as a negative regulator of human CD8+ effector T cells and that blocking LILRB1 represents a unique strategy to enhance BiTE molecule therapeutic activity against solid tumors.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos CD/imunologia , Imunoterapia/métodos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Anticorpos Biespecíficos/imunologia , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Células Tumorais Cultivadas
8.
Mol Immunol ; 113: 115-119, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30146122

RESUMO

MHC II proteins present processed antigens to CD4 + T cells through a complex set of events and players that include chaperons and accessory molecules. Antigen processing machinery is optimized for the selection of the best fitting peptides, called 'immunodominant epitopes', in the MHC II groove to which, specific CD4 + T cells respond and differentiate into memory T cells. However, due to the complexity of antigen processing, understanding the parameters that lead to immunodominance has proved difficult. Moreover, immunodominance of epitopes vary, depending on multiple factors that include; simultaneous processing of multiple proteins, involvement of multiple alleles of MHC II that can bind to the same antigen, or competition among several suitable epitopes on a single protein antigen. The current dogma assumes that once an antigenic determinant is selected under a specific condition, it would emerge immunodominant wherever it is placed. Here we will discuss some established parameters that contribute to immunodominance as well as some new findings, which demonstrate that slight changes to antigen structure can cause a complete shift in epitope selection during antigen processing and distort the natural immunodominant epitope.


Assuntos
Apresentação de Antígeno/imunologia , Epitopos Imunodominantes/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Memória Imunológica/imunologia , Peptídeos/imunologia
9.
Sci Rep ; 7: 46418, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422163

RESUMO

The immune system focuses on and responds to very few representative immunodominant epitopes from pathogenic insults. However, due to the complexity of the antigen processing, understanding the parameters that lead to immunodominance has proved difficult. In an attempt to uncover the determinants of immunodominance among several dominant epitopes, we utilized a cell free antigen processing system and allowed the system to identify the hierarchies among potential determinants. We then tested the results in vivo; in mice and in human. We report here, that immunodominance of known sequences in a given protein can change if two or more proteins are being processed and presented simultaneously. Surprisingly, we find that new spacer/tag sequences commonly added to proteins for purification purposes can distort the capture of the physiological immunodominant epitopes. We warn against adding tags and spacers to candidate vaccines, or recommend cleaving it off before using for vaccination.


Assuntos
Apresentação de Antígeno , Epitopos Imunodominantes , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Antígeno HLA-DR1/genética , Antígeno HLA-DR1/imunologia , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
10.
J Nat Prod ; 80(1): 149-155, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28093915

RESUMO

A new anthranilic acid derivative (1) was isolated from a Philippine sponge, Oscarella stillans (Bergquist and Kelly). The structure of compound 1, named oscarellin, was determined as 2-amino-3-(3'-aminopropoxy)benzoic acid from spectroscopic data and confirmed by synthesis. We examined the immunomodulating effect of compound 1 and its mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Our data indicated that the expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were significantly reduced by the pretreatment of 1 (0.1-10 µM) for 2 h. In addition, compound 1 suppressed activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-termimal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. Compound 1 abrogated LPS-induced nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activities, whereas the induction of activating transcription factor-3 (ATF-3) was increased. Taken together, our results suggest that compound 1 attenuates pro-inflammatory cytokines via the suppression of JNK, ERK, AP-1, and NF-κB and the activation of the ATF-3 signaling pathway.


Assuntos
Aminas/farmacologia , Benzoatos/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Aminas/química , Aminas/isolamento & purificação , Animais , Benzoatos/química , Benzoatos/isolamento & purificação , Citocinas/química , Interleucina-6/química , Proteínas Quinases JNK Ativadas por Mitógeno/química , Lipopolissacarídeos/química , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Estrutura Molecular , NF-kappa B/química , Óxido Nítrico Sintase Tipo II/química , Filipinas , Poríferos , Fator de Necrose Tumoral alfa/química , Proteínas Quinases p38 Ativadas por Mitógeno/química
11.
J Proteome Res ; 16(1): 355-365, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27700100

RESUMO

Proteolysis of autoantigens can alter normal MHC class II antigen processing and has been implicated in the induction of autoimmune diseases. Many autoantigens are substrates for the protease granzyme B (GrB), but the mechanistic significance of this association is unknown. Peptidylarginine deiminase 4 (PAD4) is a frequent target of autoantibodies in patients with rheumatoid arthritis (RA) and a substrate for GrB. RA is strongly associated with specific MHC class II alleles, and elevated levels of GrB and PAD4 are found in the joints of RA patients, suggesting that GrB may alter the presentation of PAD4 by RA-associated class II alleles. In this study, complementary proteomic and immunologic approaches were utilized to define the effects of GrB cleavage on the structure, processing, and immunogenicity of PAD4. Hydrogen-deuterium exchange and a cell-free MHC class II antigen processing system revealed that proteolysis of PAD4 by GrB induced discrete structural changes in PAD4 that promoted enhanced presentation of several immunogenic peptides capable of stimulating PAD4-specific CD4+ T cells from patients with RA. This work demonstrates the existence of PAD4-specific T cells in patients with RA and supports a mechanistic role for GrB in enhancing the presentation of autoantigenic CD4+ T cell epitopes.


Assuntos
Artrite Reumatoide/imunologia , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Granzimas/imunologia , Hidrolases/imunologia , Idoso , Sequência de Aminoácidos , Apresentação de Antígeno , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Autoanticorpos/biossíntese , Autoantígenos/química , Autoantígenos/genética , Sítios de Ligação , Linfócitos T CD4-Positivos/patologia , Estudos de Casos e Controles , Medição da Troca de Deutério , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Granzimas/química , Granzimas/genética , Humanos , Hidrolases/química , Hidrolases/genética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Especificidade por Substrato
12.
Front Immunol ; 6: 372, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257739

RESUMO

Antigen presentation is highly critical in adoptive immunity. Only by interacting with antigens presented by major histocompatibility complex class II molecules, helper T cells can be stimulated to fight infections or diseases. The degradation of a full protein into small peptide fragments bound to class II molecules is a dynamic, lengthy process consisting of many steps and chaperons. Deregulation in any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Indeed, human leukocyte antigens class II genes are the predominant contributors to susceptibility to autoimmune diseases. Conventional antigen-processing calls for internalization of extracellular antigens followed by processing and epitope selection within antigen-processing subcellular compartments, enriched with all necessary accessory molecules, processing enzymes, and proper pH and denaturing conditions. However, recent data examining the temporal relationship between antigen uptakes, processing, and epitope selection revealed unexpected characteristics for auto-antigenic epitopes, which were not shared with antigenic epitopes from pathogens. This review provides a discussion of the relevance of these findings to the mechanisms of autoimmunity.

13.
Mol Immunol ; 68(2 Pt A): 81-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26254987

RESUMO

The field of antigen processing and presentation is likely one of the most well defined areas in immunology based on decades of intense molecular and structural studies. Many molecules contributing to antigen processing and presentation have been discovered and their mechanisms of action been largely defined, yet a major question, which lies at the very core of the field has remained hard to pin down. The question is what determines immunodominance? Immunodominance is defined as a few specific epitopes being selected to represent an antigen to the immune system and provide targets for T cells. Many studies have aimed at understanding how epitopes are selected. A range of hypotheses related to the structural features of antigens, sensitivity to proteases, epitope affinity for MHC II, T cell precursor frequency, and T cell receptor affinity for peptide/MHC II have been considered. However, because of the variety of proteins and factors involved in antigen processing and enormous complexity, finding an answer has been challenging. Here we make an effort to tease out the sequence of events in antigen processing that promote selection of immunodominant epitopes for exogenous antigens.


Assuntos
Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Catepsinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Epitopos Imunodominantes/metabolismo , Células Apresentadoras de Antígenos/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Catepsinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica
14.
Curr Opin Immunol ; 34: 9-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25576665

RESUMO

The term immunodominance was originally defined as a restricted T cell response to a short peptide sequence derived from a given protein. The question of what determines immunodominance has been a longstanding battle for the past two decades. Hundreds of papers have been written on different aspects of epitope selection during antigen processing documenting the complexity of the process. Antigen processing machinery involves several accessory molecules and chaperons coevolved with proteins of Major Histocompatibility Complex (MHC) molecules that each plays its part in epitope selection. These molecules are targeted to specialized vesicular compartments that also accommodate antigen processing enzymes called cathepsins. Within the antigen processing compartments, highly regulated pH gradient and reducing conditions and enzymes necessary for denaturation of the antigens are available and function to optimize processing of antigen and selection of the fittest for transport to the cell membrane and presentation to T cells. Despite the complexity, a cell free reductionist antigen processing system was recently reported that included only few purified proteins, but was shown to process and select physiologically relevant epitopes from full length protein antigens. Due to its minimalist nature the system has been quite helpful in dissecting the factors that contribute to epitope selection during antigen processing. In this review, we would summarize and highlight models that may explain how the dominant epitope may be selected for presentation to CD4(+) helper T cells.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Epitopos/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Catepsinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos
15.
Nat Commun ; 5: 5369, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413013

RESUMO

Immunodominant epitopes are few selected epitopes from complex antigens that initiate T-cell responses. Here to provide further insights into this process, we use a reductionist cell-free antigen-processing system composed of defined components. We use the system to characterize steps in antigen processing of pathogen-derived proteins or autoantigens and we find distinct paths for peptide processing and selection. Autoantigen-derived immunodominant epitopes are resistant to digestion by cathepsins, whereas pathogen-derived epitopes are sensitive. Sensitivity to cathepsins enforces capture of pathogen-derived epitopes by major histocompatibility complex class II (MHC class II) before processing, and resistance to HLA-DM-mediated-dissociation preserves the longevity of those epitopes. We show that immunodominance is established by higher relative abundance of the selected epitopes, which survive cathepsin digestion either by binding to MHC class II and resisting DM-mediated-dissociation, or being chemically resistant to cathepsins degradation. Non-dominant epitopes are sensitive to both DM and cathepsins and are destroyed.


Assuntos
Autoantígenos/imunologia , Epitopos Imunodominantes/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Linfócitos T/imunologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Autoantígenos/química , Autoantígenos/genética , Catepsinas/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Virais/química , Proteínas Virais/genética
16.
Front Immunol ; 4: 260, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009612

RESUMO

Helper T cells are stimulated to fight infections or diseases upon recognition of peptides from antigens that are processed and presented by the proteins of Major Histocompatibility Complex (MHC) Class II molecules. Degradation of a full protein into small peptide fragments is a lengthy process consisting of many steps and chaperones. Malfunctions during any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Although much has been accomplished regarding how antigens are processed and presented to T cells, many questions still remain unanswered, preventing the design of therapeutics for direct intervention with antigen processing. Here, we review published work on the discovery and function of a MHC class II molecular chaperone, HLA-DO, in human, and its mouse analog H2-O, herein called DO. While DO was originally discovered decades ago, elucidating its function has proven challenging. DO was discovered in association with another chaperone HLA-DM (DM) but unlike DM, its distribution is more tissue specific, and its function more subtle.

17.
PLoS One ; 8(8): e71228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951115

RESUMO

Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing.


Assuntos
Apresentação de Antígeno , Antígenos HLA-D/imunologia , Antígeno HLA-DR1/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Antígenos HLA-D/química , Antígenos HLA-D/metabolismo , Antígeno HLA-DR1/química , Antígeno HLA-DR1/metabolismo , Humanos , Insetos , Cinética , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
19.
Methods Mol Biol ; 960: 447-459, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329506

RESUMO

HLA-DM is now known to have a major contribution to the selection of immunodominant epitopes. A better understanding of the mechanisms controlling epitope selection can be achieved by examination of the biophysical behavior of major histocompatibility complex (MHC) class II molecules upon binding of antigenic peptides and the effect of DM on the interactions. Using purified soluble molecules, in this chapter, we describe several in vitro methods for measuring peptide binding to HLA-DR molecules and the effects of HLA-DM on the interactions. A simple qualitative method, Gentle SDS-PAGE Assay, would assess the ability of peptides to form tight complexes with MHC class II molecules. Measuring binding kinetics is among the most informative approaches to understanding molecular mechanisms, and here we describe two different methods for measuring binding kinetics of peptide-MHC complexes. In one method, rates of association and dissociation of fluorescently labeled peptides to soluble MHC class II molecules can be determined using G50 spin columns to separate unbound peptides from those in complex with MHC molecules. In another method, association and dissociation of unlabeled peptides and MHC class II molecules can be determined in real time using BIAcore surface plasmon resonance (SPR). We also have described an Intrinsic Tryptophan Fluorescence Assay for studying transient interactions of DM and MHC class II molecules.


Assuntos
Antígenos HLA-D/metabolismo , Cadeias HLA-DRB1/metabolismo , Fragmentos de Peptídeos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Eletroforese em Gel de Poliacrilamida , Antígenos HLA-D/química , Antígenos HLA-D/isolamento & purificação , Cadeias HLA-DRB1/química , Cadeias HLA-DRB1/isolamento & purificação , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Fragmentos de Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Solubilidade
20.
Front Biosci (Schol Ed) ; 4(4): 1325-32, 2012 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-22652874

RESUMO

Helper T cells respond to peptide antigens derived from exogenous sources presented by MHC II on antigen presenting cells. Antigens from pathogens are internalized by professional antigen presenting cells (APC) and processed for presentation. Certain epitopes are selected during processing as the final peptides for stimulation of T cells and are termed "immunodominant". Understanding how selection of immunodominant epitopes takes place has been a difficult task because of the complexity of the mechanisms governing both antigen processing and T cell recognition. In this review, we discuss our current understanding of HLA-DM function in peptide exchange and selection and its relevance to epitope immunodominance.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos HLA-D/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos HLA-D/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Epitopos Imunodominantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...